

Gunter Gebhardt, Humboldt- Universität zu Berlin

Methods for Lexicon Maintenance

Abstract

The aim of the paper is to discuss the four basic methods for maintaining the content
of lexicon entries. Thinking of the successful application of feature structure systems
in computational linguistics, the paper suggests to introduce an additional operation
into these systems to support lexicon maintenance. Our experience in using the
lexicon formalism L e X 4 , which provides all the required operations, verifies the
approach.

1. Introduction

The development of grammars and lexicons is very dynamic, especially
in computational linguistics (CL) and it is a well known fact that it is not
easy to update a lexicon while retaining and improving its quality. As a
consequence, when developing a lexicon formalism, we do not merely
seek a device for the adequate represention of linguistical data in a
lexicon, but also aim to develop a unified and powerful tool which gives
as much support as possible when maintaining a lexicon.

An analysis of the different ways of modification of lexicon entries
gives four fundamental principles (using informal labels): renaming and
restructuring, views, extensions and variants. This paper intends to
discuss these four operations. Further analysis of these methods of
modification of lexicon entries shows that we need only two basic
operations and a mechanism of subselection to implement them. These
operations are removal and addition. Taking into consideration that one
of these operations is part of known CL formalisms, we can take these
formalisms as a basis for the development of an extended formalism as a
unified framework to support building-up and maintaining lexicons.

The outline of this paper: Firstly, we want to explain some basic
assumptions of the lexicons we deal with, secondly, we consider the task
of modifying the number of lexicon entries and the problem of selecting
entries, thirdly, we discuss the four directions of modifying lexicon
entries, and finally, we will give a conclusion with a brief look at our
lexicon formalism LeX4.

373

 1 / 8 1 / 8

EURALEX '96 PROCEEDINGS

2. Background and Motivation

The use of a lexicon as a part of a CL system presupposes a number of
special properties of its content and structure. For example it has to be
machine readable and sufficient for the purposes of information
processing.

Currently feature structures or typed feature structures (for example
Shieber (1986) and Carpenter (1992) form still the state of the art for
representing and processing symbolic information in CL. The properties
of feature structures and of the basic operations to deal with such
structures are well known. The most important operation is unification.
Unification joins the content of two data structures if and only if there is
no contradiction in the content of both structures.

The contributions in Boguraev and Briscoe (1989) and in Briscoe,
Copestake, and de Paiva (1993) as well as Emele and Heid (1993) show
the usage of feature structure systems to encode lexical information.

Another idea is to use feature structures as basic data structures for
linguistic databases. Ide, Maitre, and Veronis (1994) demonstrate how
data of machine readable dictionaries can be stored using a device very
similar to feature structures.

So we have a good motivation to use feature structures as basic
structures for our lexicon, too, and to use unification as operation
addition.

3. Some Basic Assumptions

A lexicon contains a set of entries. Each entry consists of a lexeme and a
set of attached information. So we regard a lexicon as a two-dimensional
system with the set of entries as one dimension and the set of information
belonging to each entry as the other dimension.

From data base technology we know the two primitive operations to
modify sets of entries: insert and delete. Very common is the combina­
tion of both operations to modify a set.

The operation of defining a subset of elements, maybe the set with
only one element, is selection. Further we are able to define a (partial-)
order over the set of elements and to arrange the elements corresponding
to the order: sorting.

These considerations lead to the classification shown in table 1.

374

 2 / 8 2 / 8

THE DICTIONARY-MAKING PROCESS

set of entries of information attached to an
entry

order sort renaming and restructuring

insert insert extension

delete delete view

insert and delete replace variant
select select subselect

Table 1 : Operations for modifying sets, sets of entries and sets of information
attached to an entry

The operation selection identifies an entry on the basis of its content.

One problem is that we can make different use of one item within an
entry. The item syntax for example may be the keyword, the domain of
use or an identifier for the part of the entry's syntactic description. This is
the reason why simple search tools are not suitable for solving the task of
selection. Using more enhanced search and replacement programs with
regular expression, we leave the basis of a unified framework.

The operation for selection has to take into account the structure of the
entry as well as its content, i.e. the operation is data structure dependent.
Feature structure unification is a data structure dependent operation and
we can take this as a benefit.

Unification as a selectional operation has an interesting effect: it
allows us to identify underspecified information. To select only non
underspecified information we can use subsumption - another "classic"
operation of feature structure formalisms - or the operation removal,
which is part of the extended feature structure formalism we suggest
here. Both operations are also data structure dependent. But it does not
depend on any of these operations that selection will be always restricted
to a test of unification, subsumption or removal.

4. The basic operations of maintaining single entries

4.1 Restructuring and Renaming

We consider restructuring and renaming as a bundle of two functions.
These functions are similar in not changing the information content C of
an entry - they neither add any information to, nor do they delete

375

 3 / 8 3 / 8

EURALEX '96 PROCEEDINGS

information from the modified entry C, i.e. C = C. We can define a
reverse functions to cancel the changes, i.e. X = restructuring'1

(restructuring(X)) and X = renaming'1(renaming(X)).
We will see that the two basic operations removal and addition in

combination with subselection will meet our requirements for operations
for renaming and restructuring in a unified framework.

The function renaming serves to replace any occurrence of one name
by another name. If, for example, the syntactic information is a value of
an attribute s y n , we may want to change the attribute's name to s y n t a x ;
or we may want to spell out case names rather than using an abbreviation
like g e n for gen i t ive .

Restructuring is somewhat more ambitious than renaming, because the
structure of an entry will be changed. If, for instance, the description of
case of an entry has to be modified from an old form c a s e : (n o m / a c c)
(case nominative or accusative) into n o m : + , g e n : - , d a t : - , a c c : + , the
information content is not changed, but the representation form.

Two subtasks solve renaming or restructuring consistently for all
entries of a lexicon. The first subtask selects all the entries in the lexicon
which have to be modified. The second subtask identifies the information
for renaming or restructuring, deleting this piece of information and
inserting the corresponding new one immediately.

The first task was subject of section 3. The second task of restructuring
has at first to identify that part of the information which has to be
modified. Consider for example the information content of c a s e : (n o m /
a c c) which is identical with c a s e : (a c c / n o m) , but no problem arises if
unification or one of the other operations are in use.

The next steps are removing the old pieces of information and adding
the new one. We can describe all steps of the second subtask in a rule like

delete c a s e : and
delete n o m and insert n o m : + or

by default insert n o m : - and
delete I and insert, and
delete g e n ...

Obviously, the function removal can fulfil the task of deleting the old
information and addition that of inserting the new information.
Subselection has an important role: because renaming and restructuring
do not change the information content, the old piece of information can
be deleted if and only if it can be replaced immediately by a renamed or
restructured piece of information.

376

 4 / 8 4 / 8

THE DICTIONARY-MAKING PROCESS

4.2 View

A view is a function which deletes information in an entry or in other
words to restrict our view of the entry. As a consequence, the information
content C of an entry is reduced, resulting in an entry with less content
C. So the relation C ' c C holds. It is impossible to define a function to
cancel changes, i.e. we cannot define a function X = view~l(X')
corresponding to X' = view(X).

The operation removal in combination with subselection is an
appropriate basis for implementing the function view.

The motivation for building up a new lexicon with entries containing
less information is usually a task of configuration of a lexicon for a
particular purpose. For example, information about certain readings of
some lexemes in special domains can be removed. So the extent of the
entries can be reduced and as a consequence, the application system can
run more efficiently.

The task of calculating views of entries is to be split into two subtasks.
The first is to select the relevant entries of the lexicon. The second is to
subselect the information and to delete it. Obviously, we can use the
same technology as the one used for renaming and restructuring, but
without adding the modified information.

4.3 Extension

An extension is a function for adding information to an entry. The old
entry contains less information C than the extended entry C. So the
relation C c C holds. We are able to define a reverse function X =
extension'1 (extension'X)).

This reverse function for removing the additional information may be
problematic if unification is the operation used, because it is impossible
to define a reverse function for unification. An alternative way to
implement the operation is to use unification in conjunction with
subselection, which will give the possibility of defining a reverse
function.

The operations addition and, if necessary, subselection are an
appropriate basis for defining the function for extension.

The task of calculating extensions has three subtasks. The first subtask
is again to select all the entries which are the basis for additional
information. The second task is to add information. The third task which
has to be solved before extension is to obtain the additional information.
Unfortunately, we cannot discuss this aspect further here.

377

 5 / 8 5 / 8

EURALEX '96 PROCEEDINGS

4.4 Variant

A variant is a function which deletes and adds information in an entry. It
is impossible to decide whether the old or the new entry contains more or
less information and the relation C * C with 3X(X с С л Х с С) holds.
Because of this property we call the new entry simply a variant of the old
one. A reverse function to cancel changes cannot be defined.

The function variant is the combination of the functions view and
extension. The discussion has shown that the two basic operations
removal and addition in combination with subselection meet the
requirements for operations in a unified framework. The task of calcu­
lating a variant is the combination of the tasks of calculating views and
extensions.

An example can show the usage of the function. The difference
between two grammar versions we had to deal with was the way they
handled prepositional objects. As a consequence, it was necessary to
modify the entries of verbs. Some prepositional objects had the status of
an obligatory object, but it was impossible to decide which only by
looking at the preposition, because this depended on the verb and the
preposition. So it was necessary to build up this part of the information
from scratch again. The new variants of lexicon entries were calculated
by removing the old information and adding new one. So the new
lexicon was totally different with respect to this part of information, it
was another variant.

5. Conclusion

The summary of our observations is shown in table 2.

set of information
attached to an entry

set relation basic operation(s)

renaming and
restructuring

C=C removal and addition

view C^C removal
extension CczC addition

removal and addition variant C with
3X(XczC AXCZC)

addition

removal and addition

Table 2: Operations for modifying the information concerning to an entry

378

 6 / 8 6 / 8

THE DICTIONARY-MAKING PROCESS

The four operations completely describe all possibilities of modifying
entries and can be mapped onto two basic operations addition and
removal.

Using the framework of feature structure systems, unification serves
as operation for addition. The operation for removal is a special feature
of our extended feature structure system. In practice we have achieved
good results with two (slightly) different versions of this operation.
Subselection makes use of both operations.

Also on the basis of this realization, we have implemented the lexicon
formalism LeX4 ("LeXicon 4(fo(u)r)malism") (Gebhardi and Heinecke
(1995)). This formalism is not restricted to its function as a tool for
lexicon maintenance, but in our experience, it is well suited to this pur­
pose. For our experiments, we use a lexicon with approximately 20,000
lexemes. To generate a particular version of the lexicon, we need on
average only few hours (less than a working day): writing the rule system
for modification and compiling the new lexicon. The time needed to edit
the additional information depends on the content and varies widely. But
even during periods of expensive expansion of the lexicon, it was always
possible to deliver a consistent lexicon.

Acknowledgements

This work was funded by the German Federal Ministry of Education,
Science, Research and Technology (BMBF) in the framework of the
Verbmobil Project under Grant 01 IV 101 G. The responsibility for the
content of this study lies with the author.

Thanks to Ines, Katherine, Chris, Johannes and Udo.

References

Boguraev, B . and T. Briscoe, eds. (1989): Computational Lexicography
for Natural Language Processing. Harlow: Longman.

Briscoe, T., A. Copestake, and V. de Paiva, eds. (1993): Inheritance,
Defaults, and the Lexicon. Cambridge: Cambridge University Press.

Carpenter, B . (1992): The Logic of Typed Feature Structures. Cambridge:
Cambridge University Press.

Emele, M. and U. Heid. (1993): Formal Specification of a Typed Feature
Logic Based Lexical Representation Language. Technical report,
DELIS-Deliverable D-V-2, Universität Stuttgart.

379

 7 / 8 7 / 8

EURALEX '96 PROCEEDINGS

Gebhardi G. and J . Heinecke (1995): Lexikonformalismus LeX4.
Technical report, Verbmobil Technisches Dokument, Humboldt-
Universität zu Berlin.

Ide, N., J . Le Maitre, and J. Véronis. (1994): Outline of a Model for
Lexical Databases. In: Zampolli, Calzolari, and Palmer (1994).

Shieber, S.M. (1986): An Introduction to Unification-Based Approaches
to Grammar. CSLI Lecture Notes, number 4. Stanford, CA: Center for
the Study of Language and Information.

Zampolli, A., N. Calzolari, and M. Palmer, eds. (1994): Current Issues in
Computational Linguistics: In Honour of Don Walker. Giardini editori
e stampatori in Pisa, Kluwer Academic Publishers, Norwell, MA.

380

Powered by TCPDF (www.tcpdf.org)

 8 / 8
Powered by TCPDF (www.tcpdf.org)

 8 / 8

http://www.tcpdf.org

